<<5678910>>
36.

 if z and w are complex  numbers such that 

$\overline{z}-i\overline{w}=0 $  and Arg (zw) = $\frac{3 \pi}{4}$, then  Arg z=


A) $\frac{\pi}{16}$

B) $\frac{\pi}{8}$

C) $\frac{\pi}{4}$

D) $\frac{3\pi}{4}$



37.

The set of real values of $\alpha$ for which the system of linear equations

 $x+(\sin \alpha)y+(\cos \alpha)z=0$

$x+(\cos \alpha)y+(\sin \alpha )z=0$

$-x+(\sin  \alpha )y-(\cos \alpha  )z=0$

has a non-trivial solution is 


A) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{8}$ (n is an integer)

B) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{8}$ (n is an integer)

C) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{8}-\frac{\pi}{8}$ (n is an integer)

D) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{8}$ (n is an integer)



38.

$\begin{bmatrix}1 & bc+ad&b^{2}c^{2}+a^{2}{d}^{2} \\1 & ca+bd & c^{2}a^{2}+b^{2}d^{2} \\ 1 & ab+cd & a^{2}b^{2}+c^{2}d^{2} \end{bmatrix}$=


A) (a-b)(b-c)(c-d)(a-d)(a-c)(d-b)

B) (a-b)(a-c)(b-c)(b-d)(a-d)(c-d)

C) (a-b)(a-c)(a-d)(b-c)(b-d)(d-c)

D) (a-b)(b-c)(c-d((b-d)



39.

$x^{n}+y^{n}$  is divisible by 


A) x-y for all $n\in N$

B) x+y for all $n\in N$

C) x+y for all n=2m-1 , $m\in N$

D) x+y for all n=2m, $m\in N$



40.

A function  $f:R-\left\{0\right\}\rightarrow R$ is defined as  

$f(x)=\begin{cases}x^{2}+3x-7, & x > 0\\h(x) ,& x < 0\end{cases}$

 If f(x)  is an odd function, then h(x)=


A) $x^{2}+3x+7$

B) $x^{2}+3x-7$

C) $-x^{2}+3x+7$

D) $-x^{2}-3x+7$



<<5678910>>